Progettazione di circuiti integrati analogici

MARCO PIOVESAN 1012992

Homework 0

L'esercitazione assegnata tratta l'analisi di un amplificatore C.S. (Common Source) usando per i componenti del circuito dei valori assegnati.

Il primo punto da risolvere è la ricerca del valore di $g_m = \frac{\partial I_D}{\partial V_{GS}}$ che rappresenta il parametro di trasconduttanza dell'NMOS visto in una schematizzazione linearizzata ovvero ai piccoli segnali.

Calcoliamo il valore teorico partendo dalla tensione di overdrive e tenendo in considerazione gli effetti di canale corto dei MOS:

$$V_{OV} = \sqrt{\frac{2}{\mu C_{ox}} \cdot \frac{L}{W} \cdot I_D} + \frac{\theta}{\mu C_{ox}} \cdot \frac{L}{W} \cdot I_D = 202 \,\text{mV}$$
 (1)

quindi ricaviamo il valore di efficienza di transconduttore:

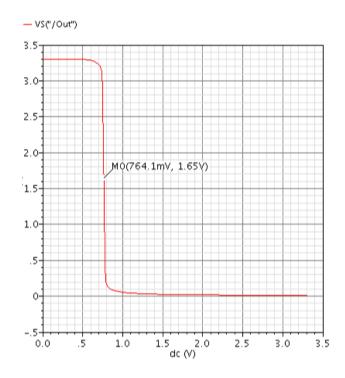
$$\frac{g_m}{I_D} = \frac{2}{V_{OV}(1 + \theta V_{OV})} = 8.79 \,\mathrm{V}^{-1} \tag{2}$$

e da questo ricaviamo il valore di g_m :

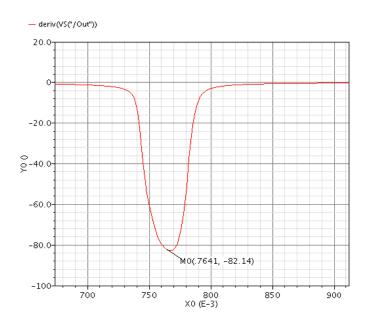
$$g_m = \frac{g_m}{I_D} \cdot I_D = 1.055 \,\text{mS}.$$
 (3)

Sono note inoltre le dimensioni dei dispositivi e quindi è possibile conoscere le relative resistenze di uscita:

$$r_0 = \eta \cdot \frac{L}{I_D} = \begin{cases} r_{0_1} \cong 75 \,\mathrm{K}\Omega \\ r_{0_2} \cong 104 \,\mathrm{K}\Omega \end{cases} \tag{4}$$


A questo punto è sufficiente ricordare che in un amplificatore a source comune il valore di amplificazione in DC vale:

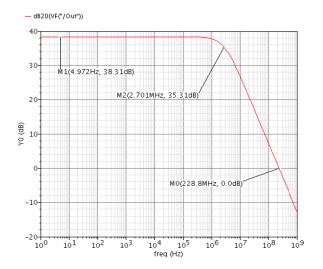
$$A_{V_0} = \frac{V_{OUT}}{V_{IN}} = -g_m \cdot (r_{0_1} \parallel r_{0_2}) = -45 \Rightarrow |A_{V_0}|_{dB} = 20 \cdot \log_{10} |A_{V_0}| \cong 33 \,dB$$
 (5)

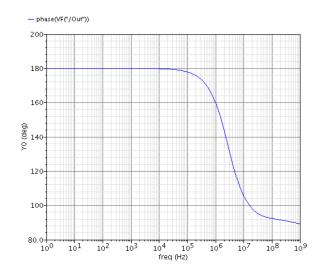

Si esegue ora una simulazione sweep-DC del circuito imponendo un generatore DC variabile al gate dell'NMOS; nell'eseguire la simulazione si è scelto di usare la scala lineare con passi di 1 mV in un range di tensione da 0 V a $V_{DD} = 3.3 \text{ V}$.

La simulazione serve a trovare il valore ottimo di bias (polarizzazione) da applicare al gate dell'NMOS.

Il valore scelto è $V_{GS}=764.1\,\mathrm{mV}$ che imposta la tensione di uscita a metà dell'alimentazione quindi a $3.3\,\mathrm{V/2}=1.65\,\mathrm{V}$.

Si è visto che in DC il valore di amplificazione è direttamente proporzionale a g_m con la relazione (5), si usa quindi la simulazione appena fatta per ricavare un'altra informazione facendo la derivata di V_{OUT} rispetto a V_{IN} : in questo modo si ha il grafico del guadagno A_V dal quale si può facilmente ricavare il valore di amplificazione in funzione del bias:


Dalla simulazione risulta un valore di $A_V = -82.14$ che è pari a 38.29 dB in corrispondenza del punto di lavoro scelto con $V_{GS} = 764.1 \,\text{mV}$, il valore teorico calcolato era $A_{VteoricodB} = 33 \,\text{dB}$.


Con la simulazione appena fatta si verifica anche che i MOS si trovino tutti in saturazione, per fare questo accertamento si riassumono di seguito in una tabella i valori più significativi per i tre dispositivi letti nella finestra *Print DC operation point* di *Virtuoso*:

	NMOS	PMOS (specchiato)	PMOS (I_{ref})	
$g_m[\mathrm{mS}]$	1.051	4.24	1.374	
$g_{ds}[\mu S]$	7.581	5.181	7.028	
$I_{DS}[\mu A]$	124.7	- 124.7	- 120	
$V_{DS}[V]$	1.66	- 1.64	- 865	
$V_{GS}[\mathrm{mV}]$	764	- 865.5	- 865	
$V_{th}[\mathrm{mV}]$	563.3	- 727.2	- 727.9	

Dalla tabella si vede che tutti i MOS sono in saturazione e si può notare l'errore nello specchio di corrente con una differenza di corrente pari a $124.7 - 120 = 4.7 \,\mu\text{A}$.

Ora si polarizza l'NMOS nel punto di lavoro ottimale e si esegue una simulazione AC: l'intervallo di frequenza è da 1 Hz a 1 GHz in scala logaritmica e con un numero punti per decade pari a 100.

Nella simulazione si trova che la banda a -3 dB del sistema termina alla frequenza di 2.701 MHz, tale valore di frequenza rappresenta anche il valore di pulsazione associata al polo dominante dato che la pendenza è di -20 dB/dec.

La frequenza di transizione, ovvero il passaggio per 0 dB pari a un guadagno unitario si trova a 228.8 MHz che si avvicina al valore teorico stimato a 200 MHz. Il margine di fase associato alla frequenza di transizione è di $PM = 90^{\circ 1}$, il sistema risulta quindi stabile.

¹questo risultato è facilmente calcolabile dato che il sistema taglia con una pendenza di −20 dB/dec, sapendo che $PM = 180^{\circ} - ∠A_V(jω) \mid_{ω=ω_T}$ e siccome $ω_T \gg ω_c$ allora $PM = 180^{\circ} - \arctan(+\infty) = 90^{\circ}$.

Per stimare lo swing di tensione si usa un segnale di tipo sinusoidale in ingresso con frequenza 1 KHz e si valuta la THD (total harmonic distortion) facendo variare l'ampiezza di questa sinusoide. La THD è un parametro che indica quanto incide l'ampiezza delle armoniche (V_n) di un segnale rispetto alla sua fondamentale (V_1) , ovvero dato il segnale v(t) la THD vale:

$$THD\% = 100 \cdot \frac{\sqrt{\sum_{n=2}^{+\infty} V_n^2}}{V_1}$$
 (6)

Nella tabella seguente si riassumono i rispettivi valori di THD valutati per diversi valori di V_{sin} :

$V_{MAX}[\mathrm{mV}]$	THD	$V_{MAX}[\mathrm{mV}]$	THD	$V_{MAX}[\mathrm{mV}]$	THD
1	0.32%	20	5.67%	30	15.08%
10	1.24%	25	10.41%		

Assumendo come valore limite THD=10% lo swing di tensione è pari a $\pm 25\,\mathrm{mV}$ intorno al punto di lavoro.